Public Key Infrastructure (PKI)

Introduction

Ritger Teunissen (ritger@hack42.nl) May 15, 2018

Hack42, Arnhem

- Worked in Information Security for 12 years
- *Member* of Hack42 (https://www.hack42.nl/)

1

- 1. Background
- 2. Asymmetric Cryptography
- 3. Public Key Infrastructure
- 4. Certificate Life Cycle

Background

PKI is a (supporting) technical solution used to secure digital communication

Real-life Examples

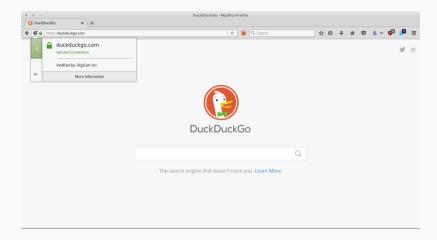


Figure 1: Duck Duck Go

Real-life Examples

Figure 2: E-mail

Figure 3: Communication

When can digital communication be considered secure?

Authenticity

Do we know who the sender is?

Non-repudiation

Did the message really come from the sender and hasn't the message been changed?

Confidentiality

Can the message only be read by the sender and receiver?

Asymmetric Cryptography

When you use cryptography to solve a problem, you have **TWO** problems

Asymmetric Cryptography

Figure 4: Key Generation

Key Pair

A key pair has both a public and private key

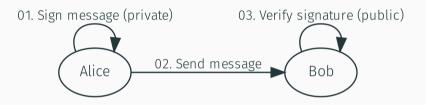


Figure 5: Digital Signature

Example

Digitally signing a document or e-mail message

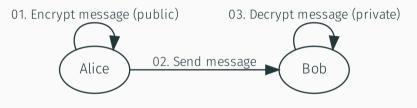


Figure 6: Encryption

Example

Encrypting a document or e-mail message

Authenticity

How to prove authenticity?

Prove possession of the private key for a public key

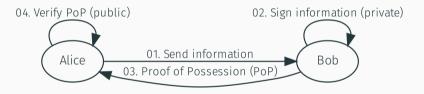


Figure 7: Authenticity

Why is authenticity separate from non-repudiation?

Answer

Prevent unintended signature creation

What do you need to know?

Key Pair

Both a public and private key. All users need to have all public keys

Digital Signature

Sign using the private key, verify using the public key

Encryption

Encryption using the public key, decryption using the private key

Public Key Infrastructure

Key Distribution

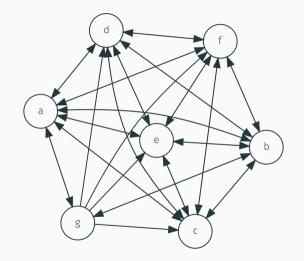


Figure 8: Key Distribution

Delegated Trust

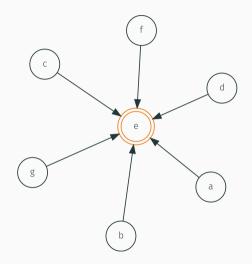


Figure 9: Delegated Trust

What is a Certificate Authority?

- Certifies the link between an identity and a public key
- \cdot Certifies a key for specific use cases
- Can revoke trust in a public key

	Certificate Viewer: "Staat der Nederlanden Root CA - G3"
General	Details
	ate Hierarchy
Staat	der Nederlanden Rooc CA - G3
Certifie	ate Fields
▼Staat	der Nederlanden Root CA - G3
	artificate
	Version
	-Serial Number
	Certificate Signature Algorithm
	Issuer
1.1	Validity
	-Not Before
	- Not After
	Subject
1 1	Subject Public Key Info
Field y	Nue
CN = 0 = 5 C = 8	Staat der Nederlanden Rust CA - G3 Laat der Nederlanden La
Epp	
	Close

Figure 10: X.509 Certificate

- Certificate = identity + public key
- Limits key usage
- Limited validity (best-before date)
- Certificate Revocation List
- Digitally signed by issuer (CA)

- Generates its own key pair (public and private key)
- Issues its own X.509 CA certificate
- Issues X.509 certificates for end entities
- Makes X.509 certificate non-reputable through a digital signature

Setup

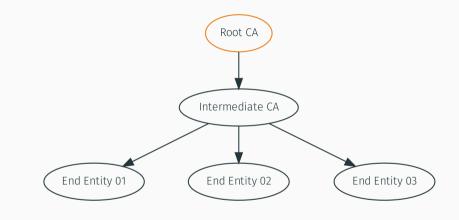


Figure 11: PKI Architecture

How is a (CA) certificate trusted?

End-entity & Intermediate CA

Trusted when the digital signature created by the CA is valid and the certificate has not been revoked

Root CA

Trusted through the use of an Access Control List

Prove authenticity of devices

Web Server

Is issued an end entity certificate by a CA, which allows clients to trust the web server by its address (FQDN)

- Private CAs issue X.509 certificates for a closed (usually corporate) environment
- Publicly trusted CAs issue X.509 certificates which are automatically trusted

CA/B Forum



Figure 12: CA/B Forum

What could possibly go wrong?

DigiNotar

What do you need to know?

Key Distribution Key distribution is a difficult problem to solve at scale

Delegated Trust

Key distribution is much easier when trust is centralised

Certificate Authority

In PKI, the Certificate Authority manages trust. Everything start (or stops) with the CA

- A key pair (public and private key) is used to secure digital communication.
- Trust is delegated to a Certificate Authority (CA)
- Certificate Authorities certify the combination of identity + key (including the CA public key itself)
- Global trust is managed by a small group of (very powerful) companies (CA/B Forum)

Questions?

Certificate Life Cycle

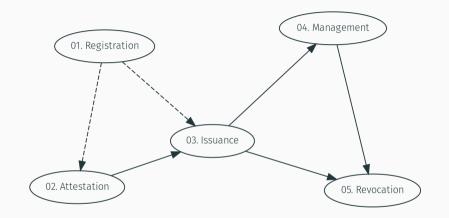


Figure 13: Certificate Life Cycle

Registration

Create a new certificate request

Attestation

Attestation (validation) of the certificate request

Issuance

Issuance of an X.509 certificate

Management

Management of issued X.509 certificates

Revocation

Revocation of issued X.509 certificates

- Often forgotten or neglected
- "Bob" manages certificates using Excel
- Manual work, does not scale and is expensive

- Automation!
- Certificate Management System (CMS)
- Provisioning Agents

Questions?